Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.

نویسندگان

  • Sonja Keiper
  • Dirk Bebenroth
  • Burckhard Seelig
  • Eric Westhof
  • Andres Jäschke
چکیده

Artificial ribozymes catalyze a variety of chemical reactions. Their structures and reaction mechanisms are largely unknown. We have analyzed a ribozyme catalyzing Diels-Alder cycloaddition reactions by comprehensive mutation analysis and a variety of probing techniques. New tertiary interactions involving base pairs between nucleotides of the 5' terminus and a large internal loop forming a pseudoknot fold were identified. The probing data indicate a preformed tertiary structure that shows no major changes on substrate or product binding. Based on these observations, a molecular architecture featuring a Y-shaped arrangement is proposed. The tertiary structure is formed in a rather unusual way; that is, the opposite sides of the asymmetric internal loop are clamped by the four 5'-terminal nucleotides, forming two adjacent two base-pair helices. It is proposed that the catalytic pocket is formed by a wedge within one of these helices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three critical hydrogen bonds determine the catalytic activity of the Diels–Alderase ribozyme

Compared to protein enzymes, our knowledge about how RNA accelerates chemical reactions is rather limited. The crystal structures of a ribozyme that catalyzes Diels-Alder reactions suggest a rich tertiary architecture responsible for catalysis. In this study, we systematically probe the relevance of crystallographically observed ground-state interactions for catalytic function using atomic muta...

متن کامل

Stereoselection in the diels-alderase ribozyme: A molecular dynamics study

The Diels-Alderase ribozyme is an in vitro-evolved ribonucleic acid enzyme that catalyzes a [4 + 2] cycloaddition reaction between an anthracene diene and a maleimide dienophile. The ribozyme can in principle be used to selectively synthesize only one product enantiomer, depending on which of the two entrances to the catalytic pocket, "front" or "back", the substrate is permitted to use. Here, ...

متن کامل

Mg2+-dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis

Here, we report a single-molecule fluorescence resonance energy transfer (FRET) study of a Diels-Alderase (DAse) ribozyme, a 49-mer RNA with true catalytic properties. The DAse ribozyme was labeled with Cy3 and Cy5 as a FRET pair of dyes to observe intramolecular folding, which is a prerequisite for its recognition and turnover of two organic substrate molecules. FRET efficiency histograms and ...

متن کامل

Stereoselective synthesis using immobilized Diels-Alderase ribozymes.

Development of artificial ribozymes by in vitro selection has so far, mostly been addressed from the viewpoint of fundamental research. However, such ribozymes also have high potential as selective catalysts in practical syntheses. Immobilization of an active and selective ribozyme is an important step towards this end. A 49-nucleotide RNA molecule that was previously found to stereoselectively...

متن کامل

Next-generation sequencing reveals how RNA catalysts evolve from random space

Catalytic RNAs are attractive objects for studying molecular evolution. To understand how RNA libraries can evolve from randomness toward highly active catalysts, we analyze the original samples that led to the discovery of Diels-Alderase ribozymes by next-generation sequencing. Known structure-activity relationships are used to correlate abundance with catalytic performance. We find that effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2004